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When an electric dipole moment rotates, the flow pattern of the emitted 

energy exhibits a vortex structure in the near field. The field lines of 

energy flow swirl around an axis which is perpendicular to the plane of 

rotation of the dipole. This rotation leads to an apparent shift of the 

dipole when viewed from the far field. The shift is of the order of the 

spatial extend of the vortex, which is about a fraction of an optical 

wavelength. We also show that when an image of the radiation is 

formed on an observation plane in the far field, the rotation of the field 

lines in the near field leads to a shift of the dipole image.  

14.1. Introduction 

When light is emitted by a localized source, it appears as if the light 

travels along straight lines from the source to the observer, when viewed 

from the far field (many wavelengths from the source). These light rays 

are the flow lines of energy, and they are usually referred to as optical 

rays. The rays are the orthogonal trajectories of the wave fronts. In the 

geometrical optics limit of light propagation certain terms in Maxwell’s 

equations can be neglected under the assumption that the wavelength of 
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the light is small compared to other relevant distances. It can then be 

shown [1] that in a homogeneous medium, like the vacuum, the rays are 

straight lines, running from the source to the far field, and they coincide 

with the field lines of energy flow. However, when the light is detected 

within a fraction of a wavelength from the source, or with nanoscale 

precision at a larger distance, the geometrical optics limit does not apply, 

and we have to consider the exact solution of Maxwell’s equations at all 

distances. The flow lines of energy will in general be curves. Far away 

from the source, each curve will asymptotically approach a straight line, 

but, when measured with nanoscale resolution, these asymptotic lines 

will not coincide with the optical rays. The rays run radially out from the 

source, but an asymptote of a field line of energy flow could be displaced 

with respect to this direction.  

When the dimension of a localized source of radiation is small 

compared to the wavelength of the emitted light, then the source is in 

first approximation an electric dipole, located at the center of the source, 

and when viewed from outside the source, the radiation is identical to the 

radiation emitted by a point dipole. Also, radiation emitted by atoms and 

molecules is usually electric dipole radiation, and since atoms and 

molecules are much smaller than the wavelength of the light they emit, 

we can consider them as point sources. Since electric dipole radiation is 

the most elementary type of radiation, we shall consider the nanoscale 

structure of this type of radiation. We shall consider the spatial 

distribution of the energy flow in the near field, and we shall show that 

the curving of the field lines in the near field has an effect on the 

observable intensity profile in the far field, provided that the 

measurement is carried out with sub-wavelength resolution.  

14.2. Electric Dipole Radiation 

When the current density of a localized source oscillates harmonically 

with angular frequency ω , for instance when the source is placed in a 

laser beam oscillating at the same frequency ω , then the induced electric 

dipole moment has the form 

   )(Re)( o
ti

edt
ω−= εd  , (14.1) 
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with 0o >d  and ε  a unit vector, normalized as 1* =⋅εε . The radiated 

electric field will also have a harmonic time dependence, and can be 

written as 

   ])([Re),( ti
et

ω−= rErE  , (14.2) 

with )(rE  the complex amplitude. A similar expression holds for the 

magnetic field ),( trB . When the dipole is located at the origin of 

coordinates, the complex amplitudes of the electric and magnetic fields 

are given by [2] 
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where ck /o ω=  is the wave number in free space and r̂  is a unit vector 

which is directed from the location of the dipole to the field point, 

represented by r. We have also introduced the dimensionless variable 

rkq o= , which represents the distance between the field point and the 

dipole. In this way, a distance of π2  in terms of q corresponds to a 

distance of one optical wavelength in terms of r. The properties of the 

electric dipole moment enter the expressions for )(rE  and )(rB  only 

through the complex-valued unit vector ε  (apart from an overall od ).  

14.3. Energy Flow and the Poynting Vector 

In an electromagnetic field the energy flow is determined by the 

Poynting vector, defined as 

   ),(),(
1

),(
o

ttt rBrErS ×=
µ

 , (14.5) 

for propagation in vacuum. If dA is an infinitesimal surface element at 

the position r, with unit normal n̂ , then the power flowing through dA is 
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equal to AP dˆd nS ⋅= . Therefore, at position r the energy flows into the 

direction of the Poynting vector S. For time-harmonic fields, as in Eq. 

(14.2), the Poynting vector simplifies to 

   )*]()([Re
2

1
)(

o

rBrErS ×=
µ

 , (14.6) 

and here terms that oscillate at twice the optical frequency ω  have been 

dropped, since these average to zero in an experiment, on a time scale of 

an optical cycle. The Poynting vector in Eq. (14.6) only involves the 

complex amplitudes, rather than the fields themselves, and )(rS  is 

independent of time t.  

With expressions (14.3) and (14.4) the Poynting vector for the 

radiation emitted by a dipole can be evaluated immediately. We obtain 
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where θ  and φ  are the angles of the observation point r in a spherical 

coordinate system. The function ),( φθζ  is given by 

   )ˆ)(ˆ(1),( *εrεr ⋅⋅−=φθζ  , (14.8) 

and  
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is the power emitted by the dipole. The unit vector r̂  is in spherical 

coordinates 

   θθφφ cossin)sincos(ˆ zyx eeer ++=  , (14.10) 

and this determines the dependence of ),( φθζ  on θ  and φ , given the 

dipole moment vector ε .  

When we take dA as part of a sphere, centered around the origin, and 

with radius r, then Ω= dd 2
rA , and the radiated power per unit solid 

angle becomes 
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With Eq. (14.7) this becomes 
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since rεεr ˆ*)ˆ( ⋅⋅  is real. The emitted power per unit solid angle is 

independent of r, and this may give the impression that the power flows 

radially outward, as in the geometrical optics limit of light propagation. 

We shall see below that this is usually not the case.  

When vector ε  in Eq. (14.1) is real, the dipole moment is 

)cos()( o tdt ωεd = . This corresponds to a linear dipole moment, 

oscillating back and forth along an axis through vector ε . For this case, 

the Poynting vector becomes 
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since *)ˆ( εεr ⋅  is real. Then )(rS  is proportional to r̂  at any field point, 

and hence the power flow is exactly in the radial direction. The field lines 

of )(rS , which are the field lines of energy flow, are straight lines, 

running from the location of the dipole to infinity.  

14.4. Elliptical Dipole Moment 

In its most general state of oscillation, the dipole moment )(td  traces out 

an ellipse in a plane [3,4]. We take this plane to be the xy-plane, and we 

parametrize vector ε  as 
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 , (14.14) 

with β  real. The parametrization is chosen such that for 1±=β , vector 

ε  reduces to the standard spherical unit vectors  
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with respect to the z-axis. With ε  from Eq. (14.14), the dipole moment 

becomes 
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As time progresses, vector )(td  follows the contour of an ellipse, as 

shown in Fig. 14.1. For 1±=β  the ellipse reduces to a circle. When β  is 

positive, the rotation is counterclockwise as in the figure, which is the 

positive direction with the z-axis, as given by the right-hand rule. For 

0<β  the rotation is in the opposite direction. For 0=β , vector ε  

becomes yie− , and the oscillation is linear along the y-axis. In the limit 

∞±→β  we have xeε m→ , and the oscillation is linear along the x-axis.  

For an elliptical dipole in the xy-plane, the function ),( φθζ  from Eq. 

(14.8) becomes 
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Fig. 14.1. In its most general state of oscillation, the dipole moment d(t) rotates along an 

ellipse. The parameter β (positive in the figure) determines the lengths of the major and 

minor axes, as shown in the figure, and the sign of β determines the direction of rotation.  
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This function is, apart from an overall constant, the emitted power per 

unit solid angle into the direction ),( φθ , according to Eq. (14.12). For 

the Poynting vector, Eq. (14.7), we find 
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with  

   φφφ cossin yx eee +−=  . (14.19) 

The term proportional to r̂  is responsible for the radial power outflow, 

and the term with φe  gives a rotation in the flow of energy around the z-

axis. Close to the dipole this term is of order 5−
r , whereas the radial term 

is of order 2−
r . Therefore, in the near field the rotation will dominate the 

energy flow pattern, even though this rotation does not contribute to the 

power outflow at any distance from the dipole. In the limit of a linear 

dipole, 0=β  or ∞→β , the term with φe  vanishes, and the Poynting 

vector only has a radial component, corresponding to power flowing 

radially outward from the dipole, without any swirling around the z-axis.  

14.5. Field Lines of the Poynting Vector 

In order to investigate in detail the energy flow out of a dipole, we 

consider the field lines of the Poynting vector )(rS . Expression (14.18) 

for )(rS  determines a vector field in space, and a field line of )(rS  is a 

curve for which at any point along the curve the vector )(rS  is on its 

tangent line. When r is a point on the field line, then we can parametrize 

such a field line as )(ur , with u a dummy variable. A field line is 

determined only by the direction of )(rS , and not its magnitude, and 

hence a field line is a solution of  

   )()(
d

d
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=  , (14.20) 
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with )(rf  any positive function of r. Equation (14.19) is an autonomous 

differential equation, since the variable u does not appear on the right-

hand side. The variable u itself has no physical significance.  

We now use spherical coordinates ),,( φθq  to represent a point r, so 

that rr ˆ)/( okq= , with r̂  given by Eq. (14.10). For a point on a field 

line, q, θ  and φ  then become functions of u, and when we write out Eq. 

(14.20) we obtain 
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with 

   θθφφθ sincos)sincos( zyx eeee −+=  . (14.24) 

For the function )(rf  we take )3/(8 oo
2

kPrπ , and with Eq. (14.18) we 

then find the set of equations 
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for the coordinates q, θ  and φ  as functions of u for points on a field 

line.  

From Eq. (14.26) it follows that θ  is constant along a field line, and 

let us indicate this constant by oθ . Any field line starts at the location of 

the dipole, and we then see that it remains on a cone which has an angle 
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oθ  with the z-axis. Then we can replace θ  by oθ  on the right-hand side 

of Eq. (14.25), and divide Eq. (14.27) by Eq. (14.25). This yields 
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When we see φ  as a function of q, rather than u, this is a nonlinear first-

order equation for the function )(qφ . The equation is separable, and is 

most easily solved by considering q as a function of φ . The result is [5] 
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where A is a function of φ , defined as 
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We see from Eq. (14.28) that for q large we have 0d/d →qφ , and 

therefore φ  approaches a constant oφ  at a large distance. This is angle 

oφ  in the expression for A, and this oφ  serves as the integration constant. 

Angle φ  is now the free parameter, and it follows from the derivation in 

Ref. [5] that, given oφ , angle φ  has to be taken in the range 

   0,o ><<∞− βφφ  , (14.31) 

   0,o <∞<< βφφ  . (14.32) 

Therefore, each field line is determined by a choice of oθ  and oφ , which 

are the values of θ  and φ  at a large distance.  

We indicate by xkx o= , yky o=  and zkz o=  the dimensionless 

Cartesian coordinates of a field point. We then have along a field line 
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   φθφφ cossin)()( oqx =  , (14.33) 

   φθφφ sinsin)()( oqy =  , (14.34) 

   ocos)()( θφφ qz =  , (14.35) 

with φ  the free variable, and )(φq  given by Eq. (14.29). Figure 14.2 

shows several field lines for 4/o πθ =  and 4/3o πθ =  and for different 

values of oφ . For the figure we took 1=β , which corresponds to a 

circular dipole moment, rotating counterclockwise in the xy-plane. The 

field lines swirl around the z-axis with the same orientation as the 

rotation of the dipole moment. The field line pattern has a vortex 

structure, with the dipole at the center of the vortex. All field lines wind 

around the z-axis, while remaining on a cone. The scale in the figure is 

such that π2  corresponds to one optical wavelength, and we see that the 

spatial extend of the vortex is well below a wavelength. Figure 14.3 

shows field lines for 1=β , so for the same dipole as in Fig. 14.2, but 

now for different values of oθ . Angle oφ  is the same for all field lines, 

and is taken as 2/π . Therefore, all field lines approach asymptotically a 

straight line parallel to the positive y-axis.  
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Fig. 14.2. The figure shows several field lines of the Poynting vector for a circular dipole, 

with a dipole moment that rotates counterclockwise in the xy-plane. Each field line lies on 

a cone which makes an angle of 45º with the z-axis.  
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Fig. 14.3. The figure shows field lines for the same dipole as in Fig. 14.2, but now for 

different values of oθ , and with 2/o πφ =  for all field lines.  

 

The result for the field lines depends parametrically on the value of 

β . For 1=β  the field lines show a vortex structure near the location of 

the dipole, as illustrated in Figs. 14.2 and 14.3, and the dimension of this 

vortex is a fraction of a wavelength. For 0→β  and ∞→β  the ellipse 

reduces to a line, and the oscillation of the dipole moment becomes 

linear. As shown above, for a linear dipole the field lines are straight 

lines emanating from the dipole. In order to see the transition from the 

vortex pattern for a circular dipole to the straight-line pattern for a linear 

dipole we have graphed field lines for three values of β  in Fig. 14.4. It 

is seen from the figure that when β  decreases from unity to zero, the 

size of the vortex diminishes, until it reaches a point for 0=β . For 

1=β , the field lines bend around the z-axis over an extend of about a 

wavelength from the dipole. For smaller values of β , the field line 

becomes straight already in the very neighborhood of the dipole.  

14.6. Field Lines in the Far Field 

At a distance of many wavelengths from the dipole, each field line 

approaches a straight line, as can be seen from the figures above. This 

line, however, does not appear to come exactly from the location of the 

dipole, but it is slightly displaced with respect to the radial direction, as 
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Fig. 14.4. Shown are field lines for dipoles with different values of β . For each, 

4/o πθ =  and 2/o πφ = .  
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Fig. 14.5. Due to the rotation of a field line near the source, it appears as if the source is 

displaced when viewed from the far field. 

illustrated in Fig. 14.5. For an observer, indicated by the eye in the 

figure, the field line of energy flow seems to come from a point in the xy-

plane that does not coincide with the position of the source, and hence it 

appears as if the source is displaced with respect to its actual position. 

This apparent displacement, indicated by the displacement vector dq , is 

a result of the rotation of the field lines near the source, and as such this 

near field effect should be observable in the far field.  

In order to compute this displacement, we consider q as the 

independent variable along a field line, rather than φ , even though in the 

explicit solution (14.29) it is the other way around. For q large, φ  

approaches the value oφ , and the value of θ  along a field line is oθ  at 

any point. Therefore, for q large we can expand φ  in an asymptotic 

series as ...//)( 2
21o qcqcq ++= φφ , with the coefficients 1c , 2c , ... to 

be determined. In expression (17) for ),( φθζ  we set oθθ =  and for φ  

we substitute the asymptotic expansion. This gives ),(),( ooo φθζφθζ =  

+ � (1/q). We use this to expand the right-hand side of Eq. (14.28), 

which yields 
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The right-hand side of Eq. (14.36) is an asymptotic series in q, and term-

by-term integration gives 
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where we have set 

   
1

2

),(

1
);,(

2
oo

oo
+

=
β

β

φθζ
βφθY  , (14.38) 

which is a constant along a field line.  

Equations (14.33)–(14.35) give the Cartesian coordinates of a point 

on a field line. We now view q as the independent variable, and we 

expand φcos  and φsin  in Eqs. (14.33) and (14.34) with the help of Eq. 

(14.37). We then obtain 

   ...sin);,(
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q

q  , (14.39) 
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For a point on a field line, q is the dimensionless distance between this 

point and the origin of coordinates. When the terms represented by 

ellipses in Eq. (14.37) are omitted, parameter q loses this significance. 

Therefore, we shall write t instead of q. Equations (14.33)–(14.35) then 

become 

   ]sin);,(cos[sin ooooo φβφθφθ Ytx +=  , (14.41) 

   ]cos);,(sin[sin ooooo φβφθφθ Yty −=  , (14.42) 
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   ocosθtz =  . (14.43) 

For a given observation direction ),( oo φθ , these Cartesian coordinates 

are linear functions of t, and hence Eqs. (14.41)–(14.43) are the 

parameter equations of a straight line. This is line l  in Fig. 14.5, which 

is the asymptote of the field line in the direction ),( oo φθ . Vector or̂  in 

Fig. 14.5 is the unit vector in the ),( oo φθ  direction, which follows from 

Eq. (14.10) by replacing ),( φθ  by ),( oo φθ . When we introduce the 

vector 

   )cossin(sin);,( oooood φφθβφθ yxY eeq −=  , (14.44) 

then Eqs. (14.41)–(14.43) can be written in vector form as 

   od r̂qq t+=  , (14.45) 

where rq ok=  is a point on the line l . According to Eq. (14.43), 0=t  

gives 0=z , so this corresponds to the intersection point of l  and the xy-

plane. The position vector of this point is dq , as follows from Eq. 

(14.45), and therefore vector dq  is the displacement vector of the source 

as shown in Fig. 14.5. It represents the apparent position of the source in 

the xy-plane, when viewed from the far field. From Eqs. (14.10) and 

(14.44) we see that 0ˆod =⋅rq , so dq  is perpendicular to or̂ .  

14.7. The Displacement 

The magnitude of the displacement vector dq  is given by 
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+
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with ),( oo φθζ  given by Eq. (14.17). This source displacement depends 

on the observation angles oθ  and oφ , and on the parameter β  of the 

ellipse. For observation along the z-axis we have 0sin o =θ  and the  
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displacement is zero. As a function of oθ , the displacement is maximum 

for 2/o πθ = , so for observation along the xy-plane. In the xy-plane and 

for a given β , the displacement depends on the location in the xy-plane, 

e.g., on the angle oφ . We find that the displacement is maximum for 

1)2cos( o =φ  when 1|| >β , and for 1)2cos( o −=φ  when 1|| <β . From 

Fig. 14.1 we then see that this corresponds to an observation along the 

major axis of the ellipse in both cases. In this direction, the displacement 

is given by 

   








<

>

=
1||,

||

2

1||,||2

d β
β

ββ

q  , (14.47) 

for a given β . For a circular dipole we have 1|| =β , and the maximum 

displacement is 2d =q . For 0→β  or ∞→β  the eccentricity of the 

ellipse increases and the dipole becomes more linear. We then have 

2d >q  and the displacement can grow without bounds when the dipole 

approaches a linear dipole.  

14.8. Intensity in the Image Plane 

The observation direction ),( oo φθ  can be represented by a unit vector 

or̂ , as in Fig. 14.5. We now consider an observation plane, shown in Fig. 

14.6, which is a plane perpendicular to or̂ , and a distance or  away from 

the dipole. The origin of coordinates in this plane is represented by the 

vector or . We then define λ  and µ  axes in this plane, such that the axes 

run into the direction of the the spherical unit vectors 
oθe  and 

oφe , as 

shown in the figure. Therefore, λ  and µ  are the Cartesian coordinates of 

a point in this plane, and the position vector r of a point in this plane can 

be written as  

   
ooo φθ µλ eerr ++=  . (14.48) 
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Fig. 14.6. The figure shows the coordinate system for the image plane and several field 

lines of the Poynting vector. Point r in the plane, represented by �, has Cartesian 

coordinates ),( µλ . 

 

The dimensionless displacement vector (14.44) is a vector in this plane, 

and can be expressed as 

   oood sin);,(
o

θβφθφ Yeq −=  . (14.49) 

The corresponding vector ok/dd qr =  is shown in the figure. Therefore, 

the displacement vector is along the µ -axis. The asymptote l  of the 

field line for this direction ),( oo φθ  goes through the point dr , and when 

the distance or  is sufficiently large, the field line through this point is 

perpendicular to the observation plane.  

When an image is formed on the observation plane, or image plane, 

it may be expected that the major contribution comes from the field lines 

in the neighborhood of dr , since these cross the plane almost 

perpendicularly. In that case, the image in this plane would be 
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Fig. 14.7. Field lines of the Poynting vector in the xy-plane for a dipole moment which 

rotates in the xy-plane are shown. They swirl around the origin numerous times, and are 

then incident upon the image plane. The intensity distribution on the image plane shows a 

maximum in the neighborhood of the central field line for this direction, which goes 

through the point x  = 2 on the image plane.  

 

shifted over dr  with respect to the origin, and this shift would then be the 

same as the virtual displacement of the dipole in the xy-plane. However, 

since a bundle of field lines passing through this plane determines the 

image, rather than the single field line from Fig. 14.5, the image of the 

dipole is not necessarily exactly located at the position dr . Figure 14.7 

shows a bundle of field lines and the corresponding intensity distribution 

over a plane (defined below), and we observe that indeed the maximum 

of the image does not coincide with the displacement of the 

corresponding field line for this case ( xeq 2d = ). It should also be noted 

that the shift in the xy-plane is defined through the extrapolation of the 

µ  
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asymptote l  of the field line in the observation direction, as in Fig. 14.5, 

and, from an experimental point of view, this may not be a directly 

observable shift.  

 In order to investigate this issue in detail, we now consider the 

intensity distribution over the image plane. Since or̂  is the unit normal 

vector at all points in the image plane, the intensity (power per unit area) 

at point r is  

   oo ˆ)(),;( rrSr ⋅=µλI  . (14.50) 

This intensity depends on or , the distance between the source and the 

image plane, the observation direction ),( oo φθ , and the coordinates λ  

and µ  of point r in the plane. In addition, it depends parametrically on 

the parameter β  of the ellipse.  

We introduce dimensionless coordinates λλ ok=  and µµ ok=  in 

the observation plane, and the dimensionless distance between the origin 

of the plane and the dipole is ooo rkq = . For point r in the plane we then 

have rkq o= , and the relation to its Cartesian ),( µλ  is 

   222
o µλ ++= qq  . (14.51) 

Putting everything together yields [6] 
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for the intensity distribution in an observation plane for the case of an 

elliptical dipole moment, rotating in the xy-plane. In Eq. (14.52) we use 

the abbreviation 



398 X. Li, H. F. Arnoldus & J. Shu  

   ooo cossin θλθρ += q  , (14.53) 

and the overall factor oI  is given by 

   
2
o

o
o

8

3

r

P
I

π
=  . (14.54) 

The first two lines in Eq. (14.52) come from the angular dependence 

of the emitted power, which is accounted for by the function ),( φθζ  in 

Eq. (14.12) for Ωd/dP . The appearance in Eq. (14.52) of this angular 

dependence is not through the function ),( φθζ , since here we consider 

the power flow through a plane, whereas Ωd/dP  refers to the power 

flow through a sphere. The third line in Eq. (14.52) originates in the 

possible rotation of the field lines near the source. This is most easily 

seen from the fact that this term changes sign with the sign of β . The 

overall factor of )/(1 oqq  indicates that this term vanishes rapidly in the 

far field, as compared to the remaining terms in braces. We shall see 

below, however, that a finite and observable effect of this term survives 

in the far field.  

14.9. Linear Dipole 

Let us first consider 0=β , corresponding to a linear dipole, oscillating 

along the y-axis. The intensity distribution (52) on an image plane then 

becomes 
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For a linear dipole, all field lines are straight, and any dependence of the 

intensity on or , λ  and µ  comes from the angular dependence of 

Ωd/dP  and from the fact that we cut through Ωd/dP  with a plane. As 

an illustration, let us consider an observation plane perpendicular to the 

y-axis at the positive side. We then have 2/o πθ = , so oq=ρ , and 

2/o πφ = . We introduce angle γ  as the observation direction for a point 
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in the image plane, as seen from the site of the dipole (see Fig. 14.6). We 

then have qq /cos o=γ , and the intensity becomes 

   γγµλ 23
oo sincos),;( II =r  . (14.56) 

Since the right-hand side of Eq. (14.56) only depends on angle γ , the 

intensity distribution in the image plane is circularly symmetric around 

the origin. At the origin of the image plane we have 0=γ  and therefore 

0=I , which corresponds to the well-known fact that no radiation is 

emitted along the dipole axis for a linear dipole. The intensity has a 

maximum for 5/3cos =γ , corresponding to an angle of o39=γ , and 

this defines a ring in the observation plane. The radius of this ring is 

3/2oq . The intensity profile is shown in Fig. 14.8.  

14.10. Rotating Dipole and the Far Field 

The intensity distribution in Fig. 14.8 scales with the distance oq  

between the dipole and the observation plane, which is a reflection of the 

fact that the field lines of the Poynting vector are straight for a linear 

dipole. When the image plane moves further away, the picture remains 

the same, apart from a scale factor. We now consider the effect of the 

rotation of the field lines near the source for a rotating dipole moment on 

the intensity profile in the far field. We first look at a circular dipole for 

which 1±=β . The intensity on the image plane, given by Eq. (14.52), 

simplifies for 1±=β  to 
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There is no dependence on the observation angle oφ , as could be 

expected for a circular dipole moment in the xy-plane.  

 



400 X. Li, H. F. Arnoldus & J. Shu  

0.0

0.5

1.0

-4

0

4

-2 0 2 4

µ−

λ

I

 
Fig. 14.8. The figure shows the intensity distribution on an image plane for a linear 

dipole. The plane is perpendicular to the dipole axis.  

 

We are looking for effects in the far field that are due to the rotation 

of the field lines near the source. The displacement from Sec. 14.7 was 

maximum for observation in the xy-plane, e.g. 2/o πθ = , so here we 

consider the same situation in order to find the maximum effect. From 

Eq. (14.53) we then have oq=ρ , and from Eq. (14.57) we see that the 

dependence on the coordinate λ  in the image plane only enters through 

the λ  dependence of q in Eq. (14.51). Therefore, the intensity only 

depends on λ  as 2λ , and consequently there is an extremum at 0=λ . 

With 2/o πθ =  and 0=λ , Eq. (14.57) becomes 
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which is the intensity along the µ  axis in the image plane. To find the 

extrema, we set 0/ =∂∂ µI . This yields 
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In the far field we have 1o >>q , and Eq. (14.59) becomes 
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3 22
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µ
β
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qq

 . (14.60) 

We are looking for a possible shift in the intensity profile due to the 

rotation of the field lines. Such a shift has to remain finite for ∞→oq , 

as can be seen from Fig. 14.7, so at such an extremum we must have 

0/ o →qµ  for oq  large. If we indicate by pµ  the solution of Eq. 

(14.60), we find for the location of the peak in the intensity profile 

   βµ
3

2
p −=  . (14.61) 

The magnitude of this shift is 2/3 in dimensionless coordinates, and since 

π2  corresponds to one wavelength, the shift is equal to a wavelength 

divided by π3 . Apparently, this is a nanoscale shift for optical radiation, 

but it is a shift that persists in the far field. Figure 14.9 shows the 

intensity distribution for this case.  

For Fig. 14.9 we took 4o =q  (and 1o =I ), which is π/2  times a 

wavelength. This is just enough to justify the far-field approximation 

1o >>q . For larger values of oq , the background becomes very large 

since it scales with oq , and it may not be possible experimentally to 

resolve the shift of the peak. In an experiment, the dipole is set in 

oscillation with a laser beam. A circular dipole moment in the xy-plane is 

induced by a circularly polarized laser beam, propagating along the z-

axis, and the sign of β  is determined by the helicity of the laser. In Eq. 

(14.57), the first line is the broad background and the second line is due 

to the rotation of the field lines. The background does not depend on the 

sign of β , so if we would measure the intensity for left- and right-

handed helicity then the difference of the profiles would be twice the 

second line of Eq. (14.57), and any resulting difference profile would be 

due entirely to the rotation of the field lines. This experiment was 

performed recently [7] and such an asymmetric profile was found indeed.  
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Fig. 14.9. The figure illustrates the nanoscale shift of the intensity profile for a circular 

dipole. The image plane is the same as in Fig. 14.8.  

For an elliptical dipole, similar calculations show [6] that the profile 

is more complicated. It can have maxima, minima and saddle points. In 

particular, the maximum shown in Fig. 14.9 can become a minimum, and 

the effect of the rotation of the field lines can be a moving hole rather 

than a moving peak.  

14.11. Intensity in the Near Field 

With very precise near field techniques, involving fiber tip probes, 

intensities can be measured in the near field with nanoscopic precision 

[8,9]. In this approach the existence of the vortex could be verified 

experimentally by measuring the intensity directly at the location of the 

vortex, rather than through the observation of the displacement of the 

maximum of the intensity profile in the far field. Figure 14.10 shows the 

intensity distribution on an image plane very close to a circular dipole, 

for the case where the image plane is perpendicular to the y-axis. Near  
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Fig. 14.10. The figure shows an intensity profile in the near field of a circular dipole. 

the positive peak, the field lines pass through the image plane in the 

outward direction. The negative peak indicates that in this region of the 

observation plane the field lines are inward. This image is a direct 

consequence of the spiraling of the field lines near the source. A field 

line first passes through the image plane in the outward direction, and 

then spirals back inwards near the peak with negative intensity. Although 

it may not be possible to measure a negative intensity directly in an 

experiment, the figure nevertheless illustrates the winding of the field 

lines in an appealing manner. 

14.12. Conclusions 

When an electric dipole moment rotates in the xy-plane, the field lines of 

energy flow swirl numerous times around the z-axis, while remaining on 

the surface of a cone. Far away from the dipole, the field lines approach 

asymptotically a straight line, reminiscent of an optical ray. This line is 

displaced with respect to the radial direction, and this leads to an 

apparent shift of the dipole location, when viewed from far away. This 
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displacement depends on the observation direction and on the 

eccentricity of the ellipse. In order to define an image of the dipole, we 

have considered the intensity distribution of the emitted radiation over an 

image plane. For a circular dipole, the image is a single peak when 

viewed in the plane of rotation of the dipole. It was shown that in the far 

field the peak of this intensity profile is shifted with respect to the central 

direction, and that this shift is due to the rotation of the field lines near 

the source. In this fashion, the near field curving of the field lines affects 

the image in the far field, and this makes the vortex near the dipole 

observable at a macroscopic distance. The shift is of the order of a 

fraction of a wavelength, as is the dimension of the vortex.  
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